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NOMENCLATURE
c, specific heat;
k, thermal conductivity ;
L, latent heat;
s, temporal position of the phase front;
t, time;
T, temperature;
Ten»  phase-change temperature ;
X, length ;
o, thermal diffusivity ;
8, homogenised temperature ;
P, density.

INTRODUCTION

A CHARACTERISTIC of heat transfer problems dealing with
phase change is the existence of an interface separating the
phases. On this interface, the latent heat associated with the
phase change is absorbed or liberated and, as a consequence
of heat transfer processes in the two phases, the location of the
interface is continuously changing in time. Extensive reviews
on methods currently in use for the solution of heat transfer
problems with phase change can be found in references [ 1, 2].
Several numerical methods using the finite element form-
ulation have been reported in the technical literature [3-6].
The finite element methods mentioned in references [4-6]
employ the enthalpy method of formulation and cannot cope
with the case in which the phase change occurs at a specific
temperature. The purpose of this note is to present a simple 1-
dim. procedure using finite elements for solving heat transfer
problems in which the change of phase occurs at a specific
temperature.

FORMULATION OF THE PROBLEM

For the sake of simplicity it is assumed that the medium has
homogeneous, isotropic thermal properties in each of its
thermodynamic states, that the change of phase occurs at a
specific temperature, and that boundary conditions of the
first kind are imposed on the outer surface. This situation is
governed by the parabolic equation

a0, a%0,,
p-cm;=km-?, (1)
where m = 1, 2 for the different thermodynamic states and
m = T = Top (2)
The initial conditions in the region of interest are
0,(x,0) = f{x), 3)

and the boundary conditions on the outer surface I' are

0L, 1) = f(t). @
A boundary condition is also imposed on the phase interface:
0,.(s(t),1) = 0. %)
The energy balance on the phase interface is
a0, a0, ds(t)
— —k,——=p-L-—— at x=s(t) 6
W 25y p at ( (6)

The 1-dim. space and the attendant temperature field can be
divided into isoparametric elements with variable numbers of
nodes such that for an element with N nodes,

N
x= 3 hx, (7)
i=1

and

N
6=1Y ho,
i=1
where x; are the finite element nodal point coordinates, h;
represents the element interpolation functions, and 8, are the
temperatures at the element nodes. Then the finite element
formulation of the present problem becomes [7, p. 184]

C4+K-0=0, @®)

where K is the conductivity matrix, C is the heat capacity
matrix, and Q is the nodal point heat flow input matrix. Ata
specific time when the position of the phase front coincides
with that of a nodal point

ds(t)
Q=pL— ©)
dr
at the nodal point and Q = 0 at the other nodal points. When
the phase front does not coincide with any nodal point

Q=0

Since it is obvious from a physical point of view that the
conditions on the phase front, equations (5) and (6), will
continuously affect the temperature distribution in the medi-
um and that a discontinuity in the slope of the temperature
profile is to be expected at the phase front, a new scheme is
proposed to implement these facts in the finite element
method of solution. Assume for the sake of simplicity that the
medium can be modelled by a number of two-node elements
as shown in Fig. 1. (It can be shown that exactly the same
procedure can be used for elements of variable numbers of
nodes.) The method of solution requires that an additional
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Fii. 1. Typical two-node element.

degree of {reedom (i.e. node) be introduced to coincide with
the position of the phase front at any instant in time. As the
phase front enters the element {cf Fig. 1} this node is
assumed to separate the original element into two different
elements, consistent with the physical effect of the phase front.

The K and C matrices for the two-node element shown in
Fig. 1 prior to the entrance of the phase front are

k k ¢
[ 11 :21 and [‘311 xz]‘ (an
kyy kg €1 Cap
After the entrance of the phase front into the element in
question, new K and C matrices can be computed for the new
elements, by any regular method of integration ([ 7], p. 155), if

we assume that at a certain instant in time, {r), the position of
the phase front, s{r}, is known:

Ky K. 0 ¢ ¢y 0
Ky, ki K é and i ¢y ch s (13
0 K, Kyl 0 o

Note that the matrices in equation {12) represent the case
when nodes 1 and 2 in Fig. 1 do not belong to the same
¢lement and the temperatures in these nodes are not in-
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terdependent. The temperature at node j, the position of the
phase front, is known to be zero from equation (5). Therefore,
in order to solve equation (8) for the temperature distribution
at the other nodal points, it is sufficient to introduce in the
general K and C matrices, the following matrix elements from

equation (12),
0’ '{ and [c‘“ 01 ]
Ky 0 oy

[
1
]

in the place of the matrix elements shown in equation {11).
Equation (8} cAn now be solved by any of the usual methods
of sotution [ 7, 8], The stability and convergence will depend
on the method chosen. It is obvious that the resulting
temperature distribution is consistent with the boundary
condition, equation (5). After the nodal temperatures at time
(¢) are found, equation (8) can be solved on a single element
level for node j [see Fig. 1 and equation (12)], to obtain the
position of the phase front at the next time step, s(t -+ At) by
using for the nodal heat flux Q at node j,

(g U A0SO
Q=p-L Ar
Thisexpression was obtained by using a simple Euler forward
interpolation in the energy balance equation {6). The in-
terpolation used for the solution of equation {8) should be
compatible with the one used in equation {14).
The temperature distribution must now be found at time
{t + Ar} in order to continue the iteration procedure, Since
the described scheme is not self-starting, the position of the
phase front at the first time step was found by using
Neumann’s exact solution for a semi-infinite medium [9].
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Fi, 2. Position of the phase front as a function of time.
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SAMPLE SOLUTION

Toillustrate the method, the position of the phase front and
the temperature distribution were found for a slab-like region
of water with an initial temperature of 10°C when a tempera-
ture of — 20°Cis applied on the outer surface, Fig. 2. The slab
was modelled by using 10 two-node elements with a time step
of 4000s.

In Fig. 2 the position of the phase front obtained here is
compared to: an enthalpy model finite element solution using
50 and 20 two-node elements, with a time step of 200 s [6];
Neumann'’s exact solution for a semi-infinite medium [9]; a
finite difference solution, using 20 nodes; and a first-order
perturbation solution [10]. Although there is no exact
solution for the problem discussed here, it is seen that for
short times, in which the Neumann'‘s solution is exact, the
method of solution presented here gives an almost identical
solution to Neumann’s solution. For longer times this
solution compared well with the solution found with the 50
two-node element mesh [6]. In Fig. 3 it is seen that the
temperature distribution obtained by the finite element
method compares well with that obtained by a perturbation
method [10].

CONCLUSIONS

A finite element method for the analysis of 1-dimensional
change of phase problems has been presented. By this method
problems in which the change of phase occurs at a specific
temperature can be solved. An example has shown that the
results obtained by this method compare well with results
found in the literature.
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