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NOMENCLATURE 

specific heat; 
thermal conductivity ; 
latent heat; 
temporal position of the phase front; 
time; 
temperature; 
phase-change temperature ; 
length ; 
thermal diffusivity ; 
homogenised temperature ; 
density. 

INTRODUCTION 

A CHARACTERISTIC of heat transfer problems dealing with 
phase change is the existence of an interface separating the 
phases. On this interface, the latent heat associated with the 
phase change is absorbed or liberated and, as a consequence 
of heat transfer processes in the two phases, the location of the 
interface is continuously changing in time. Extensive reviews 
on methods currently in use for the solution of heat transfer 
problems with phase change can be found in references [ 1,2]. 
Several numerical methods using the finite element form- 
ulation have been reported in the technical literature [3-61. 
The finite element methods mentioned in references [4-61 
employ the enthalpy method of formulation and cannot cope 
with the case in which the phase change occurs at a specific 
temperature. The purpose of this note is to present a simple l- 
dim. procedure using finite elements for solving heat transfer 
problems in which the change of phase occurs at a specific 
temperature. 

FORMULATION OF THE PROBLEM 

For the sake of simplicity it is assumed that the medium has 
homogeneous, isotropic thermal properties in each of its 
thermodynamic states, that the change of phase occurs at a 
specific temperature, and that boundary condttions of the 
first kind are imposed on the outer surface. This situation is 
governed by the parabolic equation 

de, av, 
P ‘c,ndr = km .dX2, (1) 

where m = 1, 2 for the different thermodynamic states and 

8, = T,,, - Tph. (2) 

The initial conditions in the region of interest are 

&(x.0) =/1(x), (3) 

and the boundary conditions on the outer surface F are 

&Jr, t) =f*(r). (4) 

A boundary condition is also imposed on the phase interface: 

e&(r), I) = 0. (6) 

The energy balance on the phase interface is 

k,%-k,$=p.L.F at.v=s(t). (6) 

The l-dim. space and the attendant temperature field can be 
divided into isoparametric elements with variable numbers of 
nodes such that for an element with N nodes, 

and 

x = C hixi 
,=I 

(7) 

8 = C vi, 
i--l 

where xi are the finite element nodal point coordinates, h, 
represents the element interpolation functions, and 0, are the 
temperatures at the element nodes. Then the finite element 
formulation of the present problem becomes [7, p. 1841 

C*8+K*tl=Q, (8) 

where K is the conductivity matrix, C is the heat capacity 
matrix, and Q is the nodal point heat flow input matrix. At a 
specific time when the position of the phase front coincides 
with that of a nodal point 

Q+.t$ 

at the nodal point and Q = 0 at the other nodal points. When 
the phase front does not coincide with any nodal point 

Q = 0. (10) 

Since it is obvious from a physical point of view that the 
conditions on the phase front, equations (5) and (6), will 
continuously affect the temperature distribution in the medi- 
um and that a discontinuity in the slope of the temperature 
profile is to be expected at the phase front, a new scheme is 
proposed to implement these facts in the finite element 
method of solution. Assume for the sake of simplicity that the 
medium can be modelled by a number of two-node elements 
as shown in Fig. 1. (It can be shown that exactly the same 
procedure can be used for elements of variable numbers of 
nodes.) The method of solution requires that an additional 
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FIG. 1. Typical two-node element. 

degme of freedom (i.e. node) be introduced to coincide with 
the position of the phase front at any instant in time. As the 
phase front enters the &ment {cf. Fig. l), this node is 
assumed to separate the origina element into two different 
efemems, consistent with the physica e&ct of the phase front 

The K and C matrices for the two-node ekment shown in 
Fig. I prior to the entrance of the phase front are 

After the entrance of the phase front into the element in 
qwestion, new K and C matrices can be computed for the new 
elements, by any regular method of integration ([7], p, 15% if 
we assume that at a certain instant in time, (I), the position of 
the phase front, sftk is known : 

Note that the matrices in equation (12) represent the ca:ase 
when nodes 1 and 2 in Fig. 1 da not belong to the same 
element and the temperatures in these nodes are not in- 

1.762 J/cm: K 

terdependenf. The tem~~~~u~ at no&j9 the positfon of the 
phase front, is known to he zero from equation (5). Therefore, 
in order to solve equation (8) for the temperature distribution 
at the other nodal paints, it is sufficient to introduce: in thr: 
general K and C matricas, the following matrix elements from 
equation (12), 

in &he pke of the m&x ebments shown in equation (g 1) 
Eqrrarion (8) c& now be sat& by any of the lrsurtf rne~h~s 
d solution ET% 81~ The stability and convergpfice wifl depend 
on the method chosen. ft is &buioos that the resulting 
temperature d~str~butia~ is consistent with the boundary 
condition, equation (51. After the nodal temperatures at time 
(t) are found, equation (8) can be solved on a single element 
level for node j [see Fig. 1 and equation (12)], to obtain the 
position of the phnw front at the next time step, s(t + At) by 
using for the nodal heat flux Q at node j, 

s(r -t A~\tf - s(t) 

Q’=P’L-- At ’ 
(14) 

The tem~atu~ d~~~ib~tjo~ must now be found at time 
(f f drf in order to continue the iteration procedure, %nX 
the described scheme is not self-starting, the position of the 
phase front at the first time step was found by using 
Neumann’s exact salution for a semi-infinite medium [9]. 
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EI%haipy NIodel 121 NodesI, 
Enfhstny Muriel t5% Noctcsl, 
Finite Difference, 
Perturbetiun Method, 
Finite Element (11 Nadcs), This Work 



Shorter Communications 1989 

-10 - FlNm ELEMENT(llNOOES),THl9 WORK 

--- PERTUWATKIN METHCO 

-I5 

a1 a2 0.3 0.4 0.6 0.6 0.7 0.6 a9 1.0 

DISTANCE FROM OUTER SURFACE, m 

FIG. 3. Temperature distribution as a function of time. 

SAMPLE SOLUTION 

To illustrate the method, the position of the phase front and 
the temperature distribution were found for a slab-like region 
of water with an initial temperature of 10°C when a tempera- 
ture of - 20°C is applied on the outer surface, Fig. 2. The slab 
was modelled by using 10 two-node elements with a time step 
of 4000 s. 

In Fig. 2 the position of the phase front obtained here is 
compared to : an enthalpy model finiteelement solution using 
50 and 20 two-node elements, with a time step of 200 s [6]; 
Neumann’s exact solution for a semi-infinite medium [9J; a 
finite difference solution, using 20 nodes: and a first-order 
perturbation solution [lo]. Although there is no exact 
solution for the problem discussed here, it is seen that for 
short times, in which the Neumann‘s solution is exact, the 
method of solution presented here gives an almost identical 
solution to Neumann’s solution. For longer times this 
solution compared well with the solution found with the 50 
two-node element mesh [6]. In Fig. 3 it is seen that the 
temperature distribution obtained by the finite element 
method compares well with that obtained by a perturbation 
method [lo]. 

CONCLUSIONS 

A finite element method for the analysis of l-dimensional 
change of phase problems has been presented. By this method 
problems in which the change of phase occurs at a specific 
temperature can be solved. An example has shown that the 
results obtained by this method compare well with results 
found in the literature. 
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